10 research outputs found

    Haptic ankle platform for interactive walking in virtual reality.

    Get PDF
    This paper presents an impedance type ankle haptic interface for providing users with an immersive navigation experience in virtual reality (VR). The ankle platform actuated by an electric motor with feedback control enables the use of foot-tapping gestures to create a walking experience similar to a real one and to haptically render different types of walking terrains. Experimental studies demonstrated that the interface can be easily used to generate virtual walking and it is capable to render terrains such as hard and soft surfaces, and multi-layer complex dynamic terrains. The designed system is a seated-type VR locomotion interface, therefore allowing its user to maintain a stable seated posture to comfortably navigate a virtual scene

    Ankle-Actuated Human-Machine Interface for Walking in Virtual Reality

    Get PDF
    This thesis work presents design, implementation and experimental study of an impedance type ankle haptic interface for providing users with the immersive navigation experience in virtual reality (VR). The ankle platform enables the use of foot-tapping gestures to reproduce realistic walking experience in VR and to haptically render different types of walking terrains. The system is designed to be used by seated users allowing more comfort, causing less fatigue and motion sickness. The custom-designed ankle interface is composed of a single actuator-sensors system making it a cost-efficient solution for VR applications. The designed interface consists of a single degree of freedom actuated platform which can rotate around the ankle joint of the user. The platform is impedance controlled around the horizontal position by an electric motor and capstan transmission system. to perform walking in a virtual scene, a seated user is expected to perform walking gestures in form of ankle plantar-flexion and dorsiflexion movements causing the platform to tilt forward and backward. We present three algorithms for simulating the immersive locomotion of a VR avatar using the platform movement information. We also designed multiple impedance controllers to render haptic feedback for different virtual terrains during walking. We carried out experiments to understand how quickly users adapt to the interface, how well they can control their locomotion speed in VR, and how well they can distinguish different types of terrains presented through haptic feedback. We implemented qualitative questionnaires on the usability of the device and the task load of the experimental procedures. The experimental studies demonstrated that the interface can be easily used to navigate in VR and it is capable of rendering dynamic multi-layer complex terrains containing structures with different stiffness and brittleness properties

    Mobile robot trajectory analysis with the help of vision system

    Get PDF
    © Springer Nature Switzerland AG 2019. We present a vision-based motion analysis method for single and multiple mobile robots which allows quantifying the robot's behaviour. The method defines how often and for how much each of the robots turn and move straight. The motion analysis relies on the robot trajectories acquired online or offline by an external camera and the algorithm is based on iteratively performed a linear regression to detect straight and curved paths for each robot. The method is experimentally validated with the indoor mobile robotic system. Potential applications include remote robot inspection, rescue robotics and multi-robotic system coordination

    A classroom deployment of a haptic system for learning cell biology

    Get PDF
    The use of haptic systems in the classroom for enhancing science education is an underexplored area. In the education literature, it has been reported that certain concepts in science education are difficult for students to grasp and, as a result, misconceptions can be formed in the students' knowledge. We conducted a study with 62 Year 8 (typically 12-13 years old) students who used a haptic application to study cell biology, specifically the concept of diffusion across a cell membrane. The preliminary analysis of the feedback from the students suggests opportunities for haptic applications to enhance their learning, and also highlights a number of points to consider in the design of the application, including the choice of haptic interface and the design of the virtual environment

    A critical review of the literature on popular culture : a case of cinema in the constitution of subjectivity

    No full text

    Walking-in-Place Foot Interface for Locomotion Control and Telepresence of Humanoid Robots

    No full text

    HandsOn-computing: promoting algorithmic thinking through haptic educational robots

    No full text
    Computational thinking lies at the intellectual core of computing. Promoting computational thinking ability requires that students are provided with a clear understanding of the fundamental principles and concepts of computer science, including abstraction, logic, algorithms, and data representation. We propose to use force-feedback educational robotic devices for hands-on teaching of computational thinking. The addition of haptic feedback for teaching abstract concepts of computer science offers several advantages, as haptic feedback (i) enables an effective means of data hiding, (ii) ensures a high level of student engagement by adding another pathway for perception and enabling active physical interaction, and (iii) improves student motivation through the novelty effect. Moreover, visually impaired students may benefit from replacement of visualization with haptic feedback. We present a force-feedback application for teaching sorting algorithms and report initial student evaluations of integrating haptics to promote computational thinking

    A Suite of Robotic Solutions for Nuclear Waste Decommissioning

    Get PDF
    Dealing safely with nuclear waste is an imperative for the nuclear industry. Increasingly, robots are being developed to carry out complex tasks such as perceiving, grasping, cutting, and manipulating waste. Radioactive material can be sorted, and either stored safely or disposed of appropriately, entirely through the actions of remotely controlled robots. Radiological characterisation is also critical during the decommissioning of nuclear facilities. It involves the detection and labelling of radiation levels, waste materials, and contaminants, as well as determining other related parameters (e.g., thermal and chemical), with the data visualised as 3D scene models. This paper overviews work by researchers at the QMUL Centre for Advanced Robotics (ARQ), a partner in the UK EPSRC National Centre for Nuclear Robotics (NCNR), a consortium working on the development of radiation-hardened robots fit to handle nuclear waste. Three areas of nuclear-related research are covered here: human–robot interfaces for remote operations, sensor delivery, and intelligent robotic manipulation
    corecore